Красные и белые мышечные волокна
Красные мышечные волокна
Красные мышечные волокна
Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.
Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.
Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.
Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.
Белые мышечные волокна
Белые мышечные волокна
В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.
Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.
Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.
Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.
В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:
- Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
- Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.
Основные правила тренировок для похудения дома
Как и при любых физических нагрузках, для достижения желаемого результата необходимо придерживаться основных правил выполнения упражнений:
Периодичность занятий должна быть от двух до четырех раз за неделю. Меньшее количество не даст нужного эффекта, большее станет стрессом для организма. Начинать следует с минимума, постепенно увеличивая периодичность занятий.
Во время тренировочного процесса не рекомендуется делать перерывы.
Все комплексы следует выполнять плавно и безостановочно.
Следует соблюдать рекомендации по времени тренировочного процесса.
Для похудения идеальное время занятий составляет 40 — 45 минут
При этом важно отметить, что начинать с таких длительных занятий категорически нельзя.
Стартовать лучше всего с десятиминутного комплекса, прибавляя к нему по 5-10 минут в неделю, пока не дойдете до 40-45 минут.
Превышать рекомендуемый параметр так же не следует.
Избыточные нагрузки могут привести к разнообразным болезням и серьезным изменениям в работе организма.
Выполнять каждое упражнение следует правильно, четко следуя описанным инструкциям.
Очень часто многие новички забывают о технике исполнения, но именно от нее зависит конечный результат.
Важно следить за этим, так как часто организм начинает искать простейшие пути, особенно если человек раньше не занимался спортом.
ГМВ vs ОМВ
Скорее всего, вы уже слышали о том, что волокна, из которых состоят наши мышцы, бывают двух типов: быстрые (ГМВ) и медленные (ОМВ). Если говорить точнее, существует также третий, промежуточный тип – переходные волокна.
Тип волокна определяется количеством нервных импульсов, посылающихся к волокну. Чем импульсов больше – тем, соответственно, выше активность адезинтрифосфатазы, а также выше скорость сокращения волокна.
Адезинтрифосфатаза – это особые ферменты класса гидролаз, ускоряющие процесс отщепления H3PO4 от молекул аденозинтрифосфата, в результате которого происходит высвобождение энергии, используемой для сокращения мышц.
ГМВ (белые)
Итак, почему же они «белые»? Всё дело в содержащихся в них капиллярах, которых значительно меньше, чем в ОМВ, отсюда и различия в цвете. По своей структуре ГМВ, как правило, в несколько раз толще, чем ОМВ. Их реакция на поступающие из мозга сигналы мгновенна, а скорость сокращения как минимум в два раза выше, чем у окислительных. Энергию гликолитические волокна получают за счет быстроусвояемых АТФ, креатинфосфатов и гликогена. Необходимо понимать, что эти энергетические источники иссякают всего за 30-60 секунд. В процессе получения энергии быстрыми волокнами не участвует кислород, благодаря чему энергия высвобождается практически мгновенно, однако ее запасы сильно ограничены. Исходя из этого, можно сделать вывод, что белые мышечные волокна подходят для высокоинтенсивных, но непродолжительных нагрузок. Однако их энергии не достаточно для выполнения многочисленных повторов и долгих, монотонных движений.
ОМВ (красные)
Они являются полной противоположностью гликолитическим по своему строению и функциям, и буквально созданы для легких и продолжительных нагрузок. Они способны накапливать, запасать энергию, а затем постепенно ее расходовать, благодаря митохондриям и миоглобину. Так что, если в ваших мышцах преобладают ОМВ — из вас вполне может получиться бегун на длинные дистанции, вам также подойдет аэробный спорт.
К сожалению, ОМВ имеют гораздо меньший потенциал в росте своих объемов и количества, чем гликолитические. Так что увеличение нашей мышечной массы в основном происходит за счет ГМВ.
Соотношение ОМВ и ГМВ в нашем организме предопределено генетикой и изменить его мы не в силах. У абсолютного большинства из нас преобладают окислительные волокна; у каждого четвертого – наоборот, процентное соотношение гликолитических волокон немного выше, чем красных. И лишь у некоторых спортсменов преобладание одних мышечных волокон над другими доходит до 85% – именно они обладают самыми высокими шансами добиться наибольших результатов в спорте.
Список литературы
- Велитченко В.К. «Физкультура без травм». – М: 1993.
- Высочин Ю.В., Лукоянов В.В. «Активная миорелаксация и саморегуляция в спорте». СПб.: ГАФК им. П.Ф. Лесгафта,1997.
- В.А. Муравьев, Н.А. Созинова. «Техника безопасности на уроках физической культуры». – М: 2001
- В. Каппони, Т. Новак, «Сам себе психолог» изд. «Питер Пресс», 2-е издание, Санкт-Петербург, 1996
- Дуброский В.И. «Лечебная физическая культура». Владос – 2004.
- Кандыба В.М. «Загадочные сверхвозможности человека (Часть 1)». Киев – 2000.
- Леонова А. Б. Психодиагностика функциональных состояний человека М., 1984
- Никифоров Г.С. «Практикум по психологии здоровья». Питер – 2005.
- Холодов Ж.К. «Практикум по теории и методике физического воспитания и спорта: Учебное пособие». Академия – 2003.
- Эверли Дж., Розен-фельд Р. Стресс. Природа и лечение М., 1985
22
Все о работе красных волокон
Считается (считалось), что красные волокна (ММВ), в отличии от белых волокон (БМВ), имеют очень низкую гипертрофию, но на самом деле это не так. Удивлены? Все потому что на протяжении большого промежутка времени ученые думали, что ММВ, практически не подвержены гипертрофии. Но недавние опыты подтвердили обратное, когда взяли пробу мышечной ткани у профессиональных бодибилдеров, которые тренируют как медленные (с помощью пампинга – вид тренировки), так и быстрые волокна (прогрессирующие отягощения). Но ММВ могут хорошо расти лишь при определенных условиях, однако, это уже другая объемная тема.
Красные (медленно сокращающиеся) волокна устроены так, что они могут получать молекулы АТФ только из реакции окисления (с участием кислорода) жиров или углеводов (глюкозы). Поэтому медленные волокна могут тренироваться только тогда, когда в организме будет достаточное количество кислород. Чаще всего, хорошее поступление кислорода к мышцам осуществляется лишь при нагрузки не более 20-25% от вашего максимума и в медленном темпе (малая интенсивность). Максимальная нагрузка – это нагрузка, с которой вы сможете выполнить то или иное упражнение не более чем 1-2 раза (повтора). Например, вы жмете штангу 100 килограмм всего 1-2 раза – 100 кг это и будет ваш максимальный вес (нагрузка). Значит, если вы будите жать 20-25 кг в медленном темпе, то такая нагрузка будет выполняться за счет медленных мышечных волокон (ММВ).
Таким образом, красные волокна тренируются (работают) лишь при нагрузках с низкой интенсивностью, на протяжении длительного промежутка времени. Что помогает циркулировать кислороду по кровотоку. Например, это могут быть легкие пробежки, поднятие небольших тяжестей, быстрая ходьба, езда на велосипеде, плавание и многое другое.
Как только вы увеличите нагрузку — в работу включатся быстрые волокна подтипа — 2А или по-другому — переходные волокна, но, а если нагрузку увеличите еще больше, то тогда в работу включатся уже быстрые волокна подтипа — 2В. В этом случае начнется иная тренировка, о которой я расскажу немного позже.
В клетках медленносокращающихся волокон (ММВ) находится пигментный белок — миоглобин (о котором я говорил чуть выше). Его задача накопить как можно больше кислорода, чтобы потом в нужное время начать отдавать его митохондриям для получения энергии. Это происходит всякий раз, когда во время работы ММВ по какой-то причине не хватает кислорода.
Вот примерная схема энергообеспечения ММВ:
1. Во время продолжительной и слабоинтенсивной нагрузки, в течение десятков минут, в клетках красных волокон протекают реакции окисления триглицеридов (жиров). Но чтобы эта реакция могла продолжаться, нужен кислород…
2. Кислород доставляется в клетку при помощи капилляров (гемоглобина). Но, а если кислорода поступает мало через кровоток (капилляры), то в дело вступает миоглобин, который начинает отдавать хранящийся в нем кислород. Таким образом, в результате реакций окисления — клетки ММВ получают энергию ( молекулы АТФ).
3. И еще, источник триглицерида жирные кислоты образуются из подкожного или внутреннего жира. Поэтому вот почему красное мясо считается более жирным, чем белое.
В итоге: если ваша работа не требует от вас взрывного характера (скорости) и нагрузки более 20-25% от максимума, то в таком случае, ваш организм (красные волокна) может выполнять нагрузку очень долго. Так как красные мышечных волокон используют аэробный гликолиз (с участием кислорода) для получения энергии, который дает очень много энергии (в 19 раз больше), в отличии от анаэробного гликолиза.
Вы определили свой повторный максимум. Что делать дальше?
Отдохните примерно 10 минут, стараясь не остыть. Для этого накиньте на себя более тёплую одежду, желательно с капюшоном. Просто походите по залу и посмотрите, как тренируются другие. Время от времени делайте различные махи руками и наклоны, чтобы поддержать мышцы в тонусе.
После этой паузы выставьте в том самом упражнении вес, равный в точности 80% от повторного максимума.
А затем технически точно (не слишком медленно, не слишком быстро, но обязательно в полную амплитуду) поднимите его столько раз, сколько сможете, прилагая все возможные усилия. Но не перенапрягаясь до темноты в глазах.
Красные и белые мышечные волокна
Красные мышечные волокна
Красные мышечные волокна
Медленные волокна называют красными из-за красной гистохимической окраски, обусловленной содержанием в этих волокнах большого количество миоглобина — пигментного белка красного цвета, который занимается тем, что доставляет кислород от капилляров крови вглубь мышечного волокна.
Красные волокна имеют большое количество митохондрий, в которых происходит процесс окисления для получения энергии ST-волокна окружены обширной сетью капилляров, необходимых для доставки большого количества кислорода с кровью.
Медленные мышечные волокна приспособлены к использованию аэробной системы энергообразования: сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма. Такие волокна отлично подходят для продолжительной и не интенсивной работы (стайерские дистанции в плавании, легкий бег и ходьба, занятия с легкими весами в умеренном темпе, аэробика), движений, не требующих значительных усилий, поддержании позы. Красные мышечные волокна включаются в работу при нагрузках в пределах 20-25% от максимальной силы и отличаются превосходной выносливостью.
Красные волокна не подойдут для подъема тяжелого веса, спринтерских дистанций в плавании, так как эти виды нагрузок требуют достаточно быстрого получения и расхода энергии.
Белые мышечные волокна
Белые мышечные волокна
В быстрых волокнах меньше миоглобина, поэтому они выглядят белее.
Для белых мышечных волокон характерна высокая активность фермента АТФазы, следовательно АТФ быстро расщепляется с получением большого количества необходимой для интенсивной работы энергии. Так как FТ-волокна обладают высокой скоростью расхода энергии, они требуют и высокой скорости восстановления молекул АТФ, которую может обеспечить только процесс гликолиза, потому что в отличие от процесса окисления (аэробное энергообразование) он протекает непосредственно в саркоплазме мышечных волокон, и не требует доставки кислорода митохондриям, и доставки энергии от них уже к миофибриллам. Гликолиз ведет к образованию быстро накапливающейся молочной кислоты (лактата), поэтому белые волокна быстро устают, что в конечном итоге останавливает работу мышцы. При аэробном энергообразовании в красных волокнах молочная кислота не образуется, поэтому они способны долго поддерживать умеренное напряжение.
Белые волокна имеют больший диаметр по сравнению с красными, в них также содержится гораздо большее количество миофибрилл и гликогена, но меньше количество митохондрий. В белых волокнах находится и креатинфосфат (КФ), необходимый на начальном этапе высокоинтенсивной работы.
Белые волокна больше всего подходят для совершения быстрых, мощных, но кратковременных (так как они обладают низкой выносливостью) усилий. По сравнению с медленными волокнами, FT-волокна могут в два раза быстрее сокращаться и развивать в 10 раз большую силу. Максимальную силу и скорость человеку позволяют развить именно белые волокна. Работа от 25-30% и выше означает, что в мышцах работают именно FТ-волокна.
В зависимости от способа получения энергии быстросокращающиеся мышечные волокна делят на два типа:
- Быстрые гликолитические волокна (FTG-волокна). Эти волокна используют процесс гликолиза для получения энергии, т.е. могут использовать исключительно анаэробную систему энергообразования, которая способствует образованию лактата (молочной кислоты). Соответственно, эти волокна не могут производить энергию аэробным способом с участием кислорода. Быстрые гликолитические волокна обладают максимальной силой и скоростью сокращений. Эти волокна играют первостепенную роль при наборе массы в бодибилдинге и обеспечивают пловцам и бегунам спринтерам максимальную скорость.
- Быстрые окислительно-гликолитические волокна (FTO-волокна), иначе промежуточные или переходные быстрые волокна. Эти волокна представляют собой как бы промежуточный тип между быстрыми и медленными мышечными волокнами. FTO-волокна обладают мощной анаэробной системой энергообразования, но они приспособлены также и к выполнению достаточно интенсивной аэробной работы. То есть они могут развивать значительные усилия и развивать высокую скорость сокращения, используя гликолиз в качестве основного источника энергии, и в то же время, при низкой интенсивности сокращения, эти волокна довольно эффективно могут использовать и окисление. Промежуточный тип волокон включается в работу при нагрузке 20-40% от максимума, но когда нагрузка достигает приблизительно 40% организм уже полностью переключается на FTG-волокна.
Митохондрии и миофибриллы в мышцах
Рассмотрим строение мышечного волокна. В цитоплазме (саркоплазме) его находится большое количество митохондрий. Они играют роль электростанций, в которых происходит обмен веществ и накапливаются богатые энергией вещества, а также те, которые нужны для обеспечения энергетических потребностей. В составе любой мышечной клетки имеется несколько тысяч митохондрий. Они занимают примерно 30-35 % общей ее массы.
Строение мышечного волокна таково, что цепочка из митохондрий выстраивается вдоль миофибрилл. Это тонкие нити, обеспечивающие сокращение и расслабление наших мышц. Обычно в одной клетке находятся несколько десятков миофибрилл, при этом длина каждой может доходить до нескольких сантиметров. Если сложить массу всех миофибрилл, входящих в состав мышечной клетки, то ее процентное соотношение от общей массы будет около 50 %. Толщина волокна, таким образом, зависит в первую очередь от числа миофибрилл, находящихся в нем, а также от их поперечного строения. В свою очередь, миофибриллы состоят из большого количества крохотных саркомеров.
Поперечно-полосатые волокна свойственны мышечным тканям как женщин, так и мужчин. Однако их строение несколько отличается в зависимости от пола. По результатам биопсии мышечной ткани были сделаны выводы о том, что в мышечных волокнах женщин процент миофибрилл ниже, чем у мужчин. Это относится даже к спортсменкам высокого уровня.
Кстати, сама мышечная масса распределена неодинаково по телу у женщин и мужчин. Подавляющая ее часть у женщин находится в нижней части тела. В верхней же объемы мышц невелики, а сами они мелкие и зачастую вовсе нетренированные.
Свойства и виды мышечной ткани
Морфологические признаки:
- Вытянутая форма миоцитов;
- продольно размещены миофибриллы и миофиламенты;
- митохондрии находятся вблизи сократительных элементов;
- присутствуют полисахариды, липиды и миоглобин.
Свойства мышечной ткани:
- Сократимость;
- возбудимость;
- проводимость;
- растяжимость;
- эластичность.
Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:
- Поперечнополосатая: скелетная, сердечная.
- Гладкая.
Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:
- Мезенхимные — десмальный зачаток;
- эпидермальные — кожная эктодерма;
- нейральные — нервная пластинка;
- целомические — спланхнотомы;
- соматические — миотом.
Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.
Строение мышцы
Каждая скелетная мышца состоит из множества тонких мышечных волокон, толщиной 0,05-0,11 мм и длиной до 15 см. Мышечные волокна собраны в пучки по 10-50 штук, окруженные соединительной тканью. Сама мышца тоже окружена соединительной тканью (фасцией). Мышечные волокна составляют 85-90% массы мышцы, остальную часть составляют кровеносные сосуды и нервы, проходящие между ними. Мышечные волокна плавно переходят на концах в сухожилия, а сухожилия крепятся к костям.
В саркоплазме (цитоплазме) мышечных волокон содержится множество митохондрий, которые выполняют роль электростанций, где проходят процессы обмена веществ и скапливаются вещества богатые энергией, а также другие вещества, необходимые для обеспечения энергетические потребностей. Каждая мышечная клетка имеет тысячи митохондрий, которые составляют 30-35% ее массы. Митохондрии выстраиваются цепочкой вдоль миофибрилл, тонких мышечных нитей, благодаря которым и происходит сокращение-расслабление мышц. Одна клетка содержит обычно несколько десятков миофибрилл. Длина миофибриллы может достигать нескольких сантиметров, а масса всех миофибрилл мышечной клетки составляет около 50% ее общей массы. Таким образом, толщина мышечного волокна главным образом будет зависеть от количества находящихся в нем миофибрилл и от поперечного сечения миофибрилл. Миофибриллы в свою очередь состоят из множества крохотных саркомеров.
Целенаправленные занятия физкультурой и спортом приводят к:
- увеличению количества миофибрилл в мышечном волокне;
- увеличению поперечного сечения миофибрилл;
- увеличению размеров и количества митохондрий, снабжающих миофибриллы энергией;
- увеличиваются запасов энергоносителей в мышечной клетке (гликогена, фосфатов и т.д.).
В процессе занятий сначала увеличивается сила мышцы, в последствии увеличивается толщина мышечного волокна, что в конечном итоге приводит к общему увеличению поперечного сечения всей мышцы. Процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения – атрофия.
Сила и мышечная масса увеличиваются не пропорционально: если мышечная масса увеличивается, например, вдвое, то мышечная сила при этом увеличится втрое.
Биопсии мышечной ткани показали более низкий процент миофибрилл в мышечных волокнах женщин, чем у мужчин (даже у спортсменок высокой квалификации). Вкупе со значительно более низким уровнем тестостерона (тестостерон заставляет “выжимать” из мужского организма максимум), традиционная у мужчин тренировка на увеличение мышечной массы с большими весами в малом числе повторений оказывается малоэффективной для большинства женщин. Поэтому женщины и не могут нарастить огромные мышцы, как бы не старались. Количество мышечных волокон в конкретной мышце задано генетически и в процессе тренировок не изменяется. Поэтому человек с бОльшим количеством мышечных волокон в конкретной мышце имеет бОльший потенциал для развития этой мышцы, нежели другой человек, имеющий меньшее количество мышечных клеток в этой мышце.
Условия для роста мышц
Итак, что нужно, чтобы росли мышцы?
- ТРЕНИРОВОЧНЫЙ СТРЕСС (разрушение)! Он нужен для того, чтобы способствовать выработке АНАБОЛИЧЕСКИХ ГОРМОНОВ! Только тогда тело включит процесс роста (анаболизма).
- ГОРМОНАЛЬНЫЙ ФОН! Нам нужны ГОРМОНЫ, которые копируют информацию о синтезе белка из ДНК клетки. Именно благодаря им метаболизм (обмен веществ) сдвигается в сторону роста (анаболизма). Разрушение белковых структур на тренировке заставляет организм восстанавливать разрушения. Это залечивание, как раз, и называется СИНТЕЗ БЕЛКА.
- ИОНЫ ВОДОРОДА! О них мы сегодня уже достаточно много говорили. Они РАСКРУЧИВАЮТ СПИРАЛЬ ДНК для того, чтобы информация о синтезе белка стала доступна для считывания гормонами (стероидно-рецепторными комплексами). Если не будет достаточного количества ионов водорода, которые выделяются в ответ на расход АТФ, то у гормонов не будет возможности считать информацию о синтезе белка и запустить рост. ЗАПОМНИТЕ: ГОРМОНЫ (стероиды) без тренировочного стресса НЕ ДАДУТ РЕЗУЛЬТАТА, а ТРЕНИРОВКА БЕЗ ГОРМОНОВ ДАСТ!
- КРЕАТИНФОСФАТ! Даёт энергию молекуле ДНК для ей быстрой работы. Так же добавка КРЕАТИН МОНОГИДРАТ может способствовать выполнению дополнительных пары повторений на тренировке. Хорошая вещь.
- АМИНОКИСЛОТЫ для роста! Для того, чтобы вырастить мышцы, нужно чтобы было из чего растить! Аминокислоты – это пластический строительный материал для роста мышц.
Да белок (аминокислоты) очень важен! Но больше в условиях ДИЕТЫ (дефицита простых углеводов). Представьте, когда вы худеете, т.е. не едите углеводы и тренируетесь, то гликогена в ваших мышцах ОЧЕНЬ МАЛО, а значит приходится использовать в качестве энергии аминокислоты (дорогой источник питания). Если вы будете дополнительно пить на тренировке и после аминокислоты, то вы сохраните больше мышц.
Это не выгодно производителям спортивного питания, т.к. БЕЛОК ДОРОЖЕ и с его продажи можно получить БОЛЬШЕ! Но я считаю, что это так. УГЛЕВОДЫ ВАЖНЕЕ, чем белок, особенно в условиях набора мышечной массы, т.к. дают энергию вашим мышцам.
Дело в том, что после тренировки ваше тело ДАЖЕ НЕ ДУМАЕТ о том, чтобы растить мышцы, т.к. оно истощило запасы энергии! Ему надо их восполнить! Именно поэтому следующие два дня после тренировки ваше тело восполняет запасы энергии и даже не думает о росте. А сократительные белки продолжают разрушаться за счёт ферментов – ПРОТЕИНКИНАЗ! Только спустя 2 дня тело запускает восстановление и, как обычно пишут, восстанавливается за 7 дней. Но на самом деле, даже больше. Обычно за 10-14 дней.
Это касается ЛЮБЫХ мышечных волокон (ММВ, БМВ, ВБМВ). Единственная разница в том, что для ММВ сложнее удержать нужную концентрацию ионов водорода, поэтому необходимо выполнять упражнения определённым образом, о чём мы говорили выше в этой статье.
Включение разных типов волокон в зависимости от нагрузки
При легкой нагрузке (ходьба, прогулка на велосипеде, бег трусцой) энергия поставляется за счет аэробной системы — окисление жиров в мышечных волокнах типа I. Запасы жира неисчерпаемы.
При нагрузке средней мощности (бег, езда на велосипеде) в мышечных волокнах типа I помимо окисления жиров растет доля окисления углеводов, хотя энергообеспечение все еще протекает аэробным путем. Хорошо подготовленные спортсмены могут поддерживать максимальную аэробную нагрузку 1-2 часа. За это время происходит полное истощение запаса углеводов.
При повышении интенсивности работы (соревновательный бег на 10 км) включаются мышечные волокна типа IIа и окисление углеводов становится максимальным. Энергообеспечение идет за счет кислородного механизма, но и лактатная система вносит свой вклад. Организм перерабатывает молочную кислоту с той скоростью, с какой ее производит. Если уровень интенсивности и доля участия лактатной системы в энергообеспечении продолжают расти, молочная кислота накапливается и быстро истощаются запасы углеводов. Такая нагрузка может поддерживаться в течение ограниченного периода времени, в зависимости от тренированности спортсмена.
Во время спринтерской тренировки максимальной мощности или при выполнении интервалов с высокой интенсивностью включаются мышечные волокна типа IIb. Энергообеспечение идет полностью анаэробным путем. Источник энергии — исключительно углеводы. Показатели молочной кислоты сильно возрастают. Продолжительность нагрузки не может быть большой.
Интенсивность нагрузкиАктивные волокнаИсточники энергииЭнергетические системыНизкаяТип IЖирыКислороднаяСредняяТип I + IIаЖиры и углеводыКислородная и лактатнаяВысокаяТип I + Тип IIа + IIbУглеводыЛактатная и фосфатная
Волокна на наглядном примере
Для того, чтобы полностью разобраться с тем, что же такое ГМВ и ОМВ и как они выглядят — нет ничего лучше, чем увидеть их своими глазами. И сделать это очень просто. Вы едите курятину? Дело в том, что именно куриное мясо как нельзя лучше отображает расположение гликолитических и окислительных волокон в организме птицы. Наверняка многие из вас замечали, что мясо курицы в районе грудки и крыльев — белое, к тому же оно практически не содержит жира, тогда как мясо куриных окорочков и бедер имеет темно-красный окрас и более высокое содержание жира. Всё дело в том, что курица, как и большинство других домашних птиц, практически всё своё время проводит стоя, а значит, мышцы ее ног подвергаются постоянной статической нагрузке (т.е. задействуются окислительные волокна). В то же время крылья используются крайне редко и лишь для быстрых энергичных взмахов, что характеризует работу гликолитических волокон.
Можно ли совместить тренинг ММВ и БМВ?
Можно. Больше скажу. В армии я именно так и делал. Помню, что потренировал один раз руки так, что не смог с утра застегнуть китель, мне помогли сослуживцы, т.к. они невыносимо болели! Вот что значит, никогда не тренировал ММВ.
Есть несколько основных правил:
- ММВ ВСЕГДА ТРЕНИРУЕМ ПОСЛЕ БМВ (если вы тренируете их на одной тренировке).
- ММВ ВОССТАНАВЛИВАЮТСЯ МЕНЬШЕ (2-3 дня, т.е. уже на третий день можно тренировать опять).
- БМВ + 1-2 дня отдыха + ММВ (если тренируете на разных тренировках).
Ок. А как же объединить на практике тренировку ММВ и БМВ?
Видите в чём прикол? БМВ мы всегда качаем в начале, перед ММВ! ММВ ВСЕГДА В КОНЦЕ! НИ В КОЕМ СЛУЧАЕ МЕНЯТЬ МЕСТАМИ НЕЛЬЗЯ!
Если бы мы тренировали две мышечные группы на одной тренировке, к примеру, ГРУДЬ + РУКИ, то тогда нам сначала надо бы было тренировать БМВ ГРУДЬ, затем БМВ РУКИ, а только ПОТОМ ММВ ГРУДЬ + ММВ РУКИ. Так же, как видите, ТРЕНИРУЕМ СНАЧАЛА БОЛЬШИЕ МЫШЕЧНЫЕ ГРУППЫ (ноги, спина, грудь), а только потом МАЛЕНЬКИЕ (дельты, руки, икры).
ПРАВИЛЬНО = БМВ Грудь + БМВ Руки + ММВ Грудь + ММВ Руки.
НЕПРАВИЛЬНО = БМВ Грудь + ММВ Грудь + БМВ Руки + ММВ Руки.
НЕПРАВИЛЬНО = БМВ Руки + ММВ Руки + БМВ Грудь + ММВ Грудь.
На этом, пожалуй, я закончу статью. Если вы новичок, то пока что вам это НА ФИГ НЕ НУЖНО, но если вы уже бывалый атлет, который тренируется года два и застопорился в результатах, то тренировка ММВ может стать очень неплохой подмогой в достижении новых горизонтов в росте мышечной массы.
P.S. Подписывайтесь на обновления блога. Дальше будет только круче.
С уважением и наилучшими пожеланиями, Никита Волков!